EfliEz{ (Singleton Pattern)

BR—DERE—LH, FHREZLAIRIERINERA.

o 1. BABIERBEE— LA,
o 2. BfRpnE CelEE ShIE—SLA.
o 3. BB BRI RIR X —SLh,

fim=:

o 1. EREERE—ALA, BOTREFIFE, THEMERCIEMESRA (tHNEEFkE
TNHEER) .
° 2, BREWNHFNSZESAE (FLINESHHEE) .

R ARO, FRER, SE—MIRRWRR, —MRMZRAKXORBEE, MAKOIMEEARE
SRSLAL.

ERInS:

o 1. BREFE—FIIS,
e 2. WEB HRIITEIRR, TRSRRIFEEEIEEERIN—X, BRFISEFEX.
o 3, BRI NSFEERFEIRIRIZ, i /0 SEIREIEES.

SN getinstance() J5iAPREFERRL I synchronized (Singleton.class) BilE S &R
&R, instance #{Z2IRSLHBIKL,

e
sCIR

FER—MABNEREL. — MAERSEEUNR— MBSk,
FAEVNEREURIE T @I SR ECR R, Reb@Ed A\ A SRENREIE—HIFAGERESET

B,


af://n0
af://n26

SingletonPatternDemo

+ main(} : void

RELME—HIT &

¥ iZ[E]
SingleObject

- instance: SingleObject

- SingleObject()
+ getinstance() : SingleObject
+ showMessage() : void

1. WiXaN, &iEARS

ik FERAEEME (lazy loading) , &fEA%E., XMARAERERNIINAR, XFMSCIEARY
IR IS EAE. FAIREMS synchronized, FILAIFEENX EEHAERAIEL,

public class Singleton {
private static Singleton instance;
private Singleton (){
}

pubTlic static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();

}

return instance;

}

ETFRNMENNHERARBRISSEE, BREMELEMER,
2, Wiz, &iERE

FRGERINE (lazy loading) , &ifE%e. RFBEXT getUniquelnstance() 75AMNEL, ABATE— AT
BRRBEE—MEIER B NIZIT A, WTEER 7 SLHIEZIR uniquelnstance,

BEI—PEIBENZTEZE, HEiBEHNZITERNSAZEMERF, BIE uniquelnstance EZ
WEEHULT . XLEAZARAYET R, RUOZITAAMRERR, FNEFER.


af://n30
af://n34

public class Singleton {
private static Singleton instance;
private Singleton O{}
pubTlic static synchronized Singleton getInstance() {
if (instance == null) {
instance = new Singleton();

3

return instance;

}

3. IHiNzV
=5 Lazy iat: &
SSHERS: B

=

iR XMAOXCRER, BRBr-ELRIs.,

i REME, PITHERRES.

B RGBT, IRERE.

BET classloader HliHE%R T ZLEENRELEE, Aid, instance FEFSEHRIIHLAML, BRBEEE
EHNERBREZM, ERAMEHASEERER getinstance /5i%, (BREABHEEEMA
(HEBEAMRFRSTER) SEEEEE, XIHREYIIAW instance BFAIZHIAE! lazy loading BIZIER.

public class Singleton {
private static Singleton instance = new Singleton();
private Singleton (Q{}
public static Singleton getInstance() {
return instance;

}

4, WASHI/INERISH (DCL, BP double-checked locking)

JDK RR&: JDK1.5 %2
25 Lazy itak: 2
BEZHERS: B
EURE: RER

i XFTIURANSE, *eBEESHRERR TRAFSEE. getinstance() BIMREXI N FEER
RXHE,

public class Singleton {
private volatile static Singleton singleton;
private Singleton (){
}
pubTlic static Singleton getSingleton() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();

}


af://n38
af://n43

return singleton;

EZETENLE, BHERFERT—ifiB4. 1E singleton==null (IERT, NRFENMEAZEHIITT
if 56, BAMNEATESHEN IfIBEQRA, BRE IN I EORABIBERE, BERNMIZESIT
singleton= new Singleton(); X&KiEM, REFEMAE, BAMSHITRRLONL. BELLLRE
FANERIH, HEFTEERFE 50 $— if IFOMERER singletonEEHLALZ FAIIN
BiRfE, MBAIMNETHET T, PLURBEE—MEAEHEN, BIASHI singleton== null B4
SRR HTEOMLIRIE,

if (singleton == null) {
synchronized (Singleton.class) {
singleton = new Singleton();

3

singleton>€H volatile KEAEIHHREBE Y ER, uniqueInstance = new Singleton(); XE
BHIELED A=LHIT:

1. 79 singleton > ECNTEZS|E]
2. ¥J%R1% singleton
3. # singletonfgmI2 BECHIAF L

EEETF VM EEIESEHHRYMSE, ITINFEIEEELM 1>3>2, IESEHERGENE FTAS I
A, BREZEERMNE TS MEBRERRBYIARISLF. Fla0, L2 71 77 1#03, LR
T2 AR getSingleton() [F &I singletonF~AZ, ALLRE] singleton, {BIAT singletoni®R##A
1.

{2 volatile AJLAZELE VM RUESEHE, (RIFESEAEME MEEEIERIET.

5. EHoI/ESPIERsE
BE Lazy Mtak: 2
RESZERS: B

SEIRE: —fR

iR XMEBEARINE SN — AT, BSCIIEER, XIFSRERERYGM, REERXFH
FRMAEUEH S, XMARRERTFEHSENER, SUeBS Al EsLflisEEiER YA LR E
FH.
XA REHFIET classloader HIHISRIFIERIIANK instance IFRE—NEIE, BIRSE 3 AR
2 E3fARRE Singleton E44EEE T, BBA instance MAWSLBIL (8B1%%! lazy loading 3§
R) , MXMARE Singleton FEMAET, instance A—EHAIIAN. E SingletonHolder K88
wWEMFER, REEIENEA getinstance 73750, SRS, SingletonHolder 38, MMSLHIL
instance, #R—T, WIRLHIL instance RIBFERIR, FRLVEILEIERINE, B—70HEH, NAFE
7E Singleton SEMNERATFSLHIL, BERRBERIR Singleton SR A] BT EL BRI 47 £ R0{E T 0
#, FBARXNAHRESLAENL instance BARABEN. XNEHR, XFAELE 3 AR ESRS
H,


af://n62

pubTlic class Singleton {
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();

3

private Singleton O{}

pubTlic static final Singleton getInstance() {
return SingletonHolder.INSTANCE;

6, e

JDK RR&: JDK1.5 %2
25 Lazy Miatk: &
RESGERS: B

SEIME: 5

iR XML ANRREH ZXE, EXELURFEXNNRESZE. CEEE, BIsHEHFII
HUHI, #a3385 152 RLBHL.

XF 2 Effective Java fE& Josh Bloch 12EMIAT, ENMNEEERZLRERLAE, MEXBRI
BRSWCIE, BhLERFFICEFRCIEMAINTSR, EXIprlEZREfIL. A2, BTF JDK1.S ZFBEAMA
enum 5, XA RXBEABILARBGER, ELhrIEF, tBRIOMA.

Agei@id reflection attack SRIARFABIIE A,

pubTlic enum Singleton {
INSTANCE;

private String objName;

public String getObjName() {
return objName;

pubTlic void setObjName(String objName) {
this.objName = objName;

public static void main(String[] args) {
// EAI
Singleton firstSingleton = Singleton.INSTANCE;
firstSingleton.setobjName("firstName™);
System.out.printin(firstSingleton.getobjName());
Singleton secondSingleton = Singleton.INSTANCE;
secondSingleton.setObjName("secondName");
System.out.println(firstSingleton.getobjName());
System.out.println(secondSingleton.getobjName());

/7RG SRS
try {
Singleton[] enumConstants = Singleton.class.getEnumConstants();
for (Singleton enumConstant : enumConstants) {
System.out.println(enumConstant.getObjName());


af://n68

} catch (Exception e) {
e.printStackTrace();
}

ZELIA ARG IER§IIE . EHESCIAF, @i setAccessible() JFiART LASFAB ISR EBRIHIARKBNR
E?J public, RIEEEIIEREMMELAMENTSR, MREHILXFINGE, SETEIEREPRINGLLES
IREEHMEBIRAS. ZSEEIER VM (RIERSLHHE—R, R ASHI ARSI,

ZEMEZRFIIHIFSIZ f, A2BRIZEh. METCEIFZEEER transient 1A F
B, FEEIFIMARFIMCRITTE.

FIzii: —MRERT, FNENFERSS 1 705 2 #iiE0, BIERSE 3 iEis. REEERH
FRSCHL lazy loading RUERAY, A SfFEASE 5 #EIEHN. NRPKREIRFFILEIENISAET, TSR
FA%8 6 Mz A, WREEMIFHRAIER, TLAEEERSE 4 HXUesis=.

BT (Simple Factory)

FRE— TR ARAEFREASAT, FHEE— T LIENRIGERZEO.

Class Diagram

BB T fBSEMCRUIR FERIR R — 3R, XD SEFRAREIER TS 2K, BB T SSRRENIZ AR
=S e =N

XEMBECE PSRBT RIS, EPRABRENERIL 7 RN SSLOMCER TR,
BERXEEFREZN, NRAMEREEI, BAMBRNEFSSEBEAERE FRET. ME—BFE
REWEE, GIIEINTR, BARMBRIEFREEHITIZEN.

Client
§
«interface»
Product
Concrete Product | _ SimpleFactory
tcreates +createProduct(): Product

&3 cyc2018


af://n78
af://n80

Implementation

18— N

2. Bl S NI ORISR,

3RIE—NIT, BE—IVGE, ZAEETAES MR ALK,
AfERIZIT, B EERER SRR IIRI R,

//1. B —AEn
interface Product {

3

//2 A3 LI R SEAR R
class ConcreteProduct implements Product {

}

class ConcreteProductl implements Product {

3

class ConcreteProduct2 implements Product {

}

//3 TR T SEIL, ST A AT LML R T SRR A
class SimpleFactory {

public Product createProduct(int type) {
if (type == 1) {
return new cConcreteProductl();
} else if (type == 2) {
return new ConcreteProduct2();

}
return new concreteProduct();
}
}
//4 T

public class Client {

pubTlic static void main(String[] args) {
SimpleFactory simpleFactory = new SimpleFactory();
Product product = simpleFactory.createProduct(l);
// do something with the product

LUTEY Client 2EETEAMCAINRE, XE—FMERAISTIL. MMREZFEPFEXMIONCHED, =
HEEZEBABEEEBRI 4,

public class Client {

public static void main(string[] args) {
int type = 1;
Product product;
if (type == 1) {
product = new ConcreteProductl();
} else if (type == 2) {


af://n84

product = new ConcreteProduct2();
} else {
product = new ConcreteProduct();

}
// do something with the product

I/ 5% (Factory Method)

EXT— M EIEMRAYED, (BERFRREELGMLIBNE. T 5iEBENR RT3,
Class Diagram

EEIET &, BIBMKRRIER MK, MEL] 5iE+, EHFEREIENSR.

TEH, Factory — doSomething() /5%, XNAEBERZI—IN"RANR, XN T=mII%RH
factoryMethod() 75i&EUFE. ZAEAERMERN, FERFSEETLH,

«interface» Factory void doSomethig() {
Product — . product = factoryMethod();

+factoryMethod(): Product // do something with the product

Z> +doSomething(): void }

' ConcreteFactory Product factoryMethod() {
ConreteProduct| .  + — ——— — — | . return new ConcreteProduct();
+factoryMethod(): Product }
&8 cyc2018
Implementation

1. B (HERR)

2. BUERORY BRI

3. SO NAY T

4. F—MEOXYMNAISEHISRER S — N S EXI A T SEIEE

public abstract class Factory {
abstract public Product factoryMethod();
public void doSomething() {
Product product = factoryMethod();
// do something with the product

pubTlic class ConcreteFactory extends Factory {
pubTic Product factorymethod() {
return new ConcreteProduct();

3


af://n92
af://n94
af://n98

public class ConcreteFactoryl extends Factory {
pubTic Product factoryMmethod() {
return new cConcreteProductl();

}

public class ConcreteFactory?2 extends Factory {
pubTic Product factorymethod() {
return new cConcreteProduct2();

}

pubTlic class Client{
pubTlic static void main(String[] ags){
Factory cfl=new ConcreteFactory().factoryMmethod();
Factory cf2=new ConcreteFactoryl().factoryMethod();
Factory cf3=new ConcreteFactory2().factorymethod();

4

ST~ (Abstract Factory)

RBMH—NMED, AT EEXMNRRE .

Class Diagram

?E%IF BRXOENENSERE, BMERSNSEMAR— ISR, FHEXLEWSREEXN, IR
m—ietlEH sk, MLl HEEXRERTOE— ISR, XM T EXBERAFRE.

ST SRR T I FAEAKEEE XI5, AbstractFactory Y createProductA() #1

createProductB() F5iEEBRILEFERKEL, XA NAERIMREMETIE— ISR, XFEIL A%

ERXHIEN,

ETCENSRMFREX—HLEEE Client A3, Client Ej@id AbstractFactory ERTEARMRNGERE!

EHRINSR, EXEXFEINERHERANEXMYE, Client BERNAIEBEXE IR,

NEBERFKE, Mg (FATHESE, B Cilent ZHE T AbstractFactory, ML) FiEtETERA T 4
7K,

AbstractFactory

Client

+createProductA(): AbstractProductA
+createProductB(): AbstractProductB

N DN

ConcreteFactoryl ConcreateFactory2 AbstractProductA AbstractProductB
+createProductA(): AbstractProductA +createProductA(): AbstractProductA
+createProductB(): AbstractProductB +createProductB(): AbstractProductB ﬁ K ﬁ K
ProductAl ProductA2 ProductB1 ProductB2

[ ]

&9 cyc2018


af://n108
af://n110

Implementation

TSN RE (AJARSESL/RO/MMSRE)
25— RR (BESRO/MMSRE) WNEMSMARRIRTR
3.EURT K (MZSE/EN) |, BENE— T mEEIESE

48RS LT LUK, SNCIRTHARN~RTFENES

//1 B2 A= 2R

class AbstractProductA {
}

class AbstractProductB {

}

//2 A= R

class ProductAl extends AbstractProductA {
}

class ProductA2 extends AbstractProductA {
}

class ProductBl extends AbstractProductB {
}

class ProductB2 extends AbstractProductB {
}

/3. BT 2k g/, BRSNS T
abstract class AbstractFactory {
abstract AbstractProductA createProductA();
abstract AbstractProductB createProductB();

//4 BRI Z AT SeBisk
concreteFactoryl extends AbstractFactory {
AbstractProductA createProductA() {
return new ProductAl(Q);
}
AbstractProductB createProductB() {
return new ProductBl();

}
ConcreteFactory?2 extends AbstractFactory {
AbstractProductA createProductA() {
return new ProductA2();

AbstractProductB createProductB() {
return new ProductB2();


af://n116

public class Client {
public static void main(string[] args) {
AbstractFactory abstractFactory = new ConcreteFactoryl();
AbstractProductA productA = abstractFactory.createProductA(Q);
AbstractProductB productB = abstractFactory.createProductB();
// do something with productA and productB

=

//ATERAN R —AEE

pubTlic interface Shape {
void draw();

}

//RBELIE— AR,

public interface Color {
void fi11Q);

/ /B TR L SR
public class Rectangle implements Shape {
@override
public void draw() {
System.out.println("Inside Rectangle::draw() method.");

3

public class Square implements Shape {

@override
public void draw() {
System.out.printin("Inside Square::draw() method.");

}

public class Circle implements Shape {

@override
public void draw() {
System.out.printin("Inside Circle::draw() method.");

/ /B S O SR .
public class Red implements Color {

@override
pubTic void fi11Q) {
System.out.printin("Inside Red::fi11() method.");

}

public class Green implements Color {

@override
pubTic void fi11Q) {
System.out.printin("Inside Green::fil1() method.");



}

public class Blue implements Color {

@override
public void fi11Q {
System.out.printin("Inside Blue::fi11() method.");

//N Color #il Shape X% €@ G IR .

public abstract class AbstractFactory {
pubTlic abstract Color getColor(String color);
pubTlic abstract Shape getShape(String shape) ;

//BIEY BT AbstractFactory FIRT.) 28, FEF4HENME BABRSZARERIN R .
public class ShapeFactory extends AbstractFactory {

@override
public Shape getShape(String shapeType){
if(shapeType == null){
return null;
}
if(shapeType.equalsIgnoreCase("CIRCLE")){
return new Circle(Q);
} else if(shapeType.equalsignoreCase("RECTANGLE")){
return new Rectangle();
} else if(shapeType.equalsIgnorecCase("SQUARE")) {
return new Square();

}

return null;
}
@override

pubTlic Color getColor(String color) {
return null;

}
//BVEY BT AbstractFactory MEIET) 28, FET4HEMEBARSRERIN R .
public class ColorFactory extends AbstractFactory {

@override
pubTic Shape getShape(String shapeType){
return null;

@override
pubTlic Color getColor(string color) {
if(color == null){
return null;
}
if(color.equalsignorecase("RED")){
return new Red();
} else if(color.equalsignoreCase("GREEN")){
return new Green();
} else if(color.equalsignoreCase("BLUE")){



return new Blue();

}

return null;

/7B AN G A/ AR A S, iR I TR B (E BRI AT
public class FactoryProducer {
pubTlic static AbstractFactory getFactory(String choice){
if(choice.equalsignorecase("SHAPE")){
return new ShapeFactory();
} else if(choice.equalsIgnoreCase("COLOR™)){
return new ColorFactory();

}

return null;

//1iH FactoryProducer K3RH( AbstractFactory, it &isER(E HRIRE LRI & .
public class AbstractFactoryPatternbemo {
public static void main(String[] args) {

//RBUER T
AbstractFactory shapeFactory = FactoryProducer.getFactory("SHAPE");

//FBUER N Circle HIXT%
Shape shapel = shapeFactory.getShape("CIRCLE");

//H Circle B draw ik
shapel.draw();

//3EBUEIR N Rectangle (X%
Shape shape2 = shapeFactory.getShape("RECTANGLE");

//H Rectangle (¥ draw Jji%
shape2.draw();

J/FBIER N Square HIXTER
Shape shape3 = shapeFactory.getShape("SQUARE");

//WH square ) draw Jyik
shape3.draw();

//AREEE T
AbstractFactory colorFactory = FactoryProducer.getFactory("COLOR");

//3EEIE N Red IR S
Ccolor colorl = colorFactory.getColor("RED");

// WA Red 1 Fi11 Hik
colorl.fi11Q);

//FWEE N Green X%
Color color2 = colorFactory.getColor("Green");

// WA Green ) fi11 J7ik



color2.fi11Q0);

/RGN Blue X4
color color3 = colorFactory.getColor("BLUE");

//WH Blue 1 i1l Jiik
color3.fil11Q);

}

MERE (Observer)

EXHRZEI—ISMKI, S— I HSRSHER, SREREESREIBINAHBEBHNEFRE.
FEBE (Subject) EHRNMZRAINIR, MEBEHKEE (Observer) FRAMERE.

ONE TO MANY RELATIONSH|P

Obiect that >

holjds state

Automaflf. ufda‘[:C/ ho'[:i-Ficaﬁoh

Class Diagram

F (Subject) EAEFMIIRMRMNES. HBXIFAEWEENIIIEE, F&
SCHIXLSHRERY,

WMz=E (Observer) BYEATHEEZEEATAAY registerObserver() /i,

BB —KINERETIRE

Implementation
(RelicEs ez im)
2. SEMERE O
3. QU ERERSTINEE, RRUIT:
Bl
1.MmETIR


af://n133
af://n137
af://n140

2 MR R T2

T3
1iEM. iR, BRIMEMERETA(notifyObserver&ifobservefupdatesiX)
2 3HEMBRRIR R EHTIRE, FRBEBMAENERE T A(notifyObserven)i73i%

4 BB ESTIE, BE— " EHITIENIZIN

pubTlic interface Subject {
void registerobserver(Observer o);

void removeObserver(Observer o0);

void notifyobserver();

pubTlic class wWeatherData implements Subject {
private List<Observer> observers;
private float temperature;
private float humidity;
private float pressure;

public weatherbData() {
observers = new ArrayList<>();

public void setMeasurements(float temperature, float humidity, float
pressure) {
this.temperature = temperature;
this.humidity = humidity;
this.pressure = pressure;
notifyobserver();

@override
pubTlic void registerobserver(Observer o) {
observers.add(o);

@override
public void removeObserver(Observer o) {
int i = observers.indexof(o);
if (i >=0) {
observers.remove(i);

@override
pubTic void notifyobserver() {
for (Observer o : observers) {
o.update(temperature, humidity, pressure);



public interface Observer {
void update(float temp, float humidity, float pressure);

public class StatisticsDisplay implements Observer {
public StatisticsDisplay(Subject weatherbData) {

weatherData.reisterobserver(this);

@override
public void update(float temp, float humidity, float pressure) {

System.out.println("StatisticsDisplay.update: " + temp + " " + humidity
+ " " + pressure);
}
}
pubTlic class CurrentConditionsDisplay implements Observer {
pubTic CurrentConditionsDisplay(Subject weatherData) {
weatherbData.registeroObserver(this);
}
@override
pubTlic void update(float temp, float humidity, float pressure) {
System.out.println("CurrentConditionsDisplay.update: " + temp + " " +

humidity +
}

+ pressure);

pubTlic class weatherStation {
public static void main(string[] args) {
wWeatherbData weatherData = new wWeatherData();
CurrentConditionsDisplay currentConditionsDisplay = new
CurrentConditionsDisplay(weatherData);
StatisticsDisplay statisticsDisplay = new
StatisticsDisplay(weatherbata);

weatherData.setMeasurements(0, 0, 0);
weatherData.setMeasurements(l, 1, 1);

import java.util.ArrayList;
import java.util.List;

pubTlic class client {
public static void main(string[] args) {

ConcreteSubject subject = new ConcreteSubject();
ObserverA a = new ObserverA(Q);
ObserverA b = new ObserverA(Q);
ObserverA c = new ObserverA(Q);
/ /IR = ME LR INF subject i R I & E 4 4
subject.registerobserver(a);



subject.registerobserver(b);
subject.registerobserver(c);

/ /A8 subjectipIRAS

subject.setState(3000);
System.out.print]n(”***************************")
/ /BB MERE AR A
System.out.println(a.getMyState());
System.out.println(b.getMyState());
System.out.printin(c.getMyState());

class Subject {
private List<Observer> Tlist = new ArrayList<>();

public void registerObserver(Observer obs) {
Tist.add(obs);

public void removeObserver(Observer obs) {
int i = list.indexof(obs);

if (3 >=0) {
Tist.remove(i);

public void notifyobserver() {
for (Observer o : Tist) {
o.update(this);

interface Observer {
void update(Subject subject);

class ConcreteSubject extends Subject {
private int state;

public int getState() {
return state;

public void setState(int state) {
this.state = state;
this.notifyobserver();

class ObserverA implements Observer {
private int myState;//myStateds ZiR Hirx R fstatefdffHF—i



@override
pubTlic void update(Subject subject) {
myState = ((ConcreteSubject) subject).getState();

public int getMyState() {
return mysState;

public void setMyState(int myState) {
this.myState = myState;

EidobserableZflobserveriE[EINE Eiax

1. ERERY¥FKObservablezt, BENXJ5EREMNotifyObservers

2. BAMERESLH Observerz [, ESupdate5ik

import java.util.observable;
import java.util.Observer;

public class client {
public static void main(string[] args) {
concreteSubject subject = new ConcreteSubject();
ObserverA a = new ObserverA(Q);
ObserverA b = new ObserverA(Q);
ObserverA c = new ObserverA(Q);
[ /X ZAIEE L A I E subj ectXt RIMLEE 0 & o
subject.addobserver(a);
subject.addobserver(b);
subject.addobserver(c);

/ /% subjectfPIRAS

subject.setState(3000);

System.out. printTn ("o oo dol ool ool 1) ©
/ /BB MEE AR KA
System.out.println(a.getMyState());
System.out.printin(b.getMyState());
System.out.println(c.getMyState());

VVAERVSE
class ConcreteSubject extends Observable {
private int state;

public int getState() {
return state;

public void setState(int state) {
this.state = state;//H RIS KAE T 8%
setChanged Q) ; //#/R Hbsx R &M 7 o


af://n158

notifyobservers(this.state);//iliIL W EH

class ObserverA implements Observer {
private int myState;//myState s Z IR Hirxf & )statef i —ik

public int getMyState() {
return myState;

}

public void setMyState(int myState) {
this.myState = myState;

}

@override

public void update(Observable o, Object arg) {
myState = ((ConcreteSubject) o).getState();

RHg (Strategy)

EX—FIEE, HRENEE FAEe(ILUER,
RISRIVAT UL RIS TR ERE P,

Class Diagram

e Strategy BMOENXT—1NEiXl&, BAJESSCIL Y behavior() 75i%.

o Context 2(FRENIZEIERAVZE, HAAY doSomething() /A& 18R behavior(),
setStrategy(Strategy) F5iEA] LAZIZSHINET strategy X9, tBFLRiREENSBEEE Context FifE
J==[: 1= 07

Context «interface»

Strategy

+strategy: Strategy

+doSomething(): void

+hehavior(): void

+setStrategy(Strategy): void

strategy.behavior(); [T

ConcreteStrategyA

+hehavior(): void

ConcreteStrategyB

+hehavior(): void

#"§ cycz018



af://n162
af://n165

SINSIRIARIELE

KSRV EFNSRIER S, H BRSNS HENSRA T, ERKSEXRBIRSERFR
& Context FTZEARY State XI5, MRISEINRIET Context ASANAFRBZHSH] Strategy X
5. FMBAORSERE, 218 Context FEB{THREPHT —LRMEERZMES State WEEEKEE,
FRWREREIETIIRES.

SR TERARMBRINSHERNRE, BRERERRE T, B4 Context WERMAEKERERITA;
MERBENEERARE R AT UEEBNEER, FEULURERENS AR Context £
REE.

Implementation

RI—MEF, BRSNS, XENEERES FRINETA.

public interface QuackBehavior {
void quack();
}

public class Quack implements QuackBehavior {
@override
public void quack() {
System.out.println("quack!");
3

public class Squeak implements QuackBehavior{
@override
public void quack() {
System.out.println("squeak!");
}

public class Duck {
private QuackBehavior quackBehavior;

pubTlic void performQuack() {
if (quackBehavior != null) {
quackBehavior.quack();
}
}

pubTlic void setQuackBehavior(QuackBehavior quackBehavior) {
this.quackBehavior = quackBehavior;

3


af://n172
af://n175

public class Client {

public static void main(string[] args) {
Duck duck = new bDuck();
duck.setQuackBehavior(new Squeak());
duck.performquack();
duck.setQuackBehavior(new Quack());
duck.performquack();

squeak!
quack!

FRABRIERC

* OSPLERIVRA S, eI RN RN
* fet, ﬁéﬁ”ﬁTEU‘/, FELCR R0, A FATE A AT AR, MET- 4.
ARG RAY, R B S U AR AT !
© AT TR
*/
class TestStrategy {
pubTlic double getPrice(String type, double price) {
if (type.equals("Hil% )/ MitE")) {
System.out.printIn("A4THr, EAH") 5
return price;
} else if (type.equals("IFE%& /P AHMHE™)) {
System.out.printIn("4T /L") ;
return price * 0.9;
} else if (type.equals("ZZ /1 tE™)) {
system.out.printin("+I/\EHI");
return price * 0.85;
} else if (type.equals("Z&/ kit®E")) {
Ssystem.out.printin("#/\H");
return price * 0.8;

}
return price;
}
}
KRR

public class client {
public static void main(Sstring[] args) {
Strategy sl = new OldCustomerFewStrategy();
context ctx = new Context(sl);
ctx.printPrice(998);

interface Strategy {



public double getPrice(double standardPrice);

class NewCustomerFewStrategy implements Strategy {

@override

pubTlic double getPrice(double standardPrice) {
system.out.printIn("A4TH#, JEMN");
return standardPrice;

class NewCustomerManyStrategy implements Strategy {

@override

pubTic double getPrice(double standardPrice) {
System.out.printIn("fT L") ;
return standardPrice * 0.9;

class oOldCustomerFewStrategy implements Strategy {

@override

pubTlic double getPrice(double standardPrice) {
system.out.printIn("47/\HIE™) ;
return standardpPrice * 0.85;

class oldCustomerManyStrategy implements Strategy {

@override

pubTlic double getPrice(double standardPrice) {
System.out.printIn("fI/\#1");
return standardPrice * 0.8;

3

}
Vol

* U R AR SRR B

*ORXRERTE, BARMSEM BRI E A O B T, AR ST DO S T P s A R AR

< WRAE R springMKIEADIRE, AT LUEE R E SO, SIAKREANFSIS R, s MY R R
ac

3

class Context {
private Strategy strategy; //Xni i E N5

/ /7T LI H i ek
public Context(Strategy strategy) {

super(Q);
this.strategy = strategy;

/ /A PLEE set idskiEAN
public void setStrategy(Strategy strategy) {



this.strategy = strategy;
}

public void printPrice(double s) {
System.out.printIn("&iZififh: " + strategy.getPrice(s));

}

{EtR7% (Template Method)

EXEAER, FARB—LLRAVSCIEREIFL,
BIERSE, FRUUENENEEZNRLESER, MARSEEENE.

Class Diagram

. AN
AbstractClass public void templateMethod() {
- primitiveOperationA();
+templateMethod(): void ~ |=======m=eee
+primitiveOperationA(): void primitiveOperationB();
+primitiveOperationB(): void }
ConcreteClass
+primitiveOperationA(): void
+primitiveOperationB(): void
&3 cyc2018
Implementation
IRMEERDPFREPERATRE, (ERFLSBESERA—F, ERERPLAERSERIM,
Coffee Tea
void prepareRecipe () { void prepareRecipe () {
boilWater () boilWater();
brewCoffeeGrinds () ; & — = steepTeaBag () ;
pourInCup(); pourInCup();

addSugarAndMilk(); &——>~—————3 addLemon();

} }

pubTlic abstract class cCaffeineBeverage {

final void prepareRecipe() {
boilwater();
brew();


af://n187
af://n190
af://n192

pourInCup();
addcondiments();

abstract void brew();
abstract void addCondiments();

void boilwater() {
System.out.printin("boilwater");

void pourincup() {
System.out.printin("pourInCup");

pubTlic class Coffee extends CaffeineBeverage {
@override
void brew() {
System.out.println("Coffee.brew");

@override
void addcondiments() {
System.out.println("Coffee.addCondiments");

pubTlic class Tea extends CaffeineBeverage {
@override
void brew() {
System.out.printin("Tea.brew");

@override
void addcondiments() {
System.out.printin("Tea.addCondiments");

pubTlic class Client {
public static void main(string[] args) {
CaffeineBeverage caffeineBeverage = new Coffee();
caffeineBeverage.prepareRecipe();
System.out.printin("------————-—- Dk
caffeineBeverage = new Tea();
caffeineBeverage.prepareRecipe();



boilwater
Coffee.brew
pourInCup
Coffee.addCondiments
boilwater

Tea.brew

pourInCup
Tea.addCondiments

public class client {
public static void main(String[] args) {

BankTemplateMethod btm = new DrawMoney();

btm.process();

/ /K4 N

BankTemplateMethod btm2 = new BankTemplateMethod() {
@override
public void transact() {

System.out.printin("FEFEL") ;

IFg
btm2.process();

abstract class BankTemplateMethod {
// BAT5:
public void takeNumber() {
system.out.printTn("HUSFEBL™) ;

public abstract void transact(); ///p¥EARINLS / /81 51k

public void evaluate() {
System.out.printIn("iFiEs") ;

Vai

*OBUR TR (R AREA S i, TR BAREDS

*/

public final void process() {
this.takeNumber();
this.transactQ);//BAT . AT, FEEAST- 206 75720 18 A s/
this.evaluate();

* HGRTR
*/
class DrawMoney extends BankTemplateMethod {
@override
public void transact() {
system.out.printIn("FRELE™) ;



1&Eficgy (Adapter)

£B—

PMREOEIRAS— AR REEO.

The adapter implements the
interface Your ¢lasses :KP:H:

Class Diagram

Your Adapter
Existing
System

Bnd talks o the vender !

Lo sevvite Your

Vendor
Class

h‘hﬁ'f"; ate

ygﬂuts

Adapter

Implementation

Client Target
_________________ >
+request()
Adaptee
adaptee.specificRequst()
+request()

+specificRequst()

&9 CyC2018

F8F (Duck) FOK3B (Turkey) HBEABAINUE, Duck RIMUETERE quack() 5i%, i Turkey JEFE

gobble() 73i&.

ERIE Turkey B9 gobble() 753XI&ERCAK Duck B9 quack() /5%, MMM XS E s+ !

public interface bDuck {
void quack(Q);
}

pubTlic interface Turkey {
void gobble();
}


af://n201
af://n204
af://n206

public class wildTurkey implements Turkey {
@override
public void gobble() {
System.out.println("gobble!");

pubTlic class TurkeyAdapter implements Duck {
Turkey turkey;

public TurkeyAdapter(Turkey turkey) {
this.turkey = turkey;

@override
public void quack() {
turkey.gobble();

public class Client {
public static void main(string[] args) {
Turkey turkey = new WildTurkeyQ);
buck duck = new TurkeyAdapter(turkey);
duck.quack(Q);

SCIR2:
Fit:

1. B— MediaPlayer #OF0—ANSEHL Y MediaPlayer ¥ ORISEIRSE AudioPlayer, ERAERT,
AudioPlayer BTLARERL mp3 180,

2. BB—MEO AdvancedMediaPlayer F0SEHL Y AdvancedMediaPlayer ¥ IRISEIRSE, 12250 LARE
B vic #0 mp4 1&AIS14.

3K 1k AudioPlayer SERIEMAS RIS SUL.

R RIE—SCIL T MediaPlayer ¥ OANERBCEESE MedioAdapter, FHER AdvancedMediaPlayer X3
SCRIEMATRAUER.

1.€IE#MediaPlayer, AdvancedMediaPlayerf&[]
2.8lJ#AdvancedMediaPlayersCIisE
3.8lEMediaPlayeriEfisesk

4.8lEMediaPlayerSLRSSHHERIERCRRSS, (EEALABIEMEZIRIEI Y

public class AdapterpPatternDemo {
pubTlic static void main(String[] args) {
AudioPlayer audioPlayer = new AudioPlayer();

audioPlayer.play("mp3", "beyond the horizon.mp3");
audioPlayer.play("mp4", "alone.mp4");



audioPlayer.play("vlc", "far far away.vlc");
audioPlayer.play("avi", "mind me.avi");

* 1L 1O AR A D
:':/
interface MediaPlayer {
public void play(String audioType, String fileName);

1. 200 AR R AR
i
interface AdvancedMediaPlayer {
pubTlic void playvlc(string fileName);
pubTlic void playMp4(String fileName);

}
/ EE S
* 2. 1f6l#AdvancedMediaPlayer sk Fikvic) .
*/
class VicPlayer implements AdvancedMediaPlayer{
@override
public void playvlc(string fileName) {
System.out.printin("Playing vlc file. Name: "+ fileName);
}
@override
pubTlic void playMp4(String fileName) {
/ /2 WA
}
}

* 2.206l#AdvancedMediaPlayer: Hffseih2s (Fikmpd) .
:':/

class Mp4Player implements AdvancedMediaPlayer{

@override
pubTlic void playvlc(string fileName) {
/ /2 WA

@override
pubTlic void playmMp4(string fileName) {
System.out.printin("Playing mp4 file. Name: "+ fileName);

* 3. fildMediaPlayer &R REE.
'.':/
class MediaAdapter implements MediaPlayer {

AdvancedMediaPlayer advancedMusicPlayer;

pubTlic MediaAdapter(String audioType){



if(audioType.equalsignorecCase("vlc") ){
advancedMusicPlayer = new VlcPlayer();

} else if (audioType.equalsIgnorecCase("mp4™)){
advancedMusicPlayer = new Mp4Player();

@override
pubTlic void play(String audioType, String fileName) {
if(audioType.equalsignorecCase("vlc")){
advancedMusicPlayer.playvlc(fileName);
}else if(audioType.equalsignoreCase("mp4")){
advancedMusicPlayer.playMp4 (fileName);

4. fil#MediaPlayer %A 92A

LR F AT DURR SO At A 2 A

:':/
class AudioPlayer implements MediaPlayer {
MediaAdapter mediaAdapter;

@verride
public void play(string audioType, String fileName) {

J/REIL mp3 AR SCIRI A B SCRE
if(audioType.equalsIgnorecase("mp3")){
System.out.printin("Playing mp3 file. Name: "+ fileName);
3
//mediaAdapter $Eft 7R SRS AT SR
else if(audioType.equalsIgnoreCase("vlc")
|| audioType.equalsIgnoreCase("mp4")){
mediaAdapter = new MediaAdapter(audioType);
mediaAdapter.play(audioType, fileName);

}
else{
System.out.println("Invalid media. "+
audioType + " format not supported");
3

Z=i® (Decorator)
FXIRENZSRINTIRE,

Class Diagram

#im& (Decorator) FNIE{KRZE{E (ConcreteComponent) #3t&EAH (Component) , B{REH
NEENASEKRRTHENSR, MEMEES T — AN, XFerlEmHeErESEBRARE
1¢ Frig%in, MEEXNEREEEHENEZ L, WMoY EREEinEfThee. EinENAEEE
o EECH, _'_E:.FGEI‘JDJE& AETEIFHEEIRERYZIASCEL, MIMtE(RER 7 #EEim & AIThEE. &
L‘J\E I, BEARHFMEERNERNREER, EBARBEAEHNAEIAZTERHTEENSR.


af://n225
af://n227

«interface»
Component

+doOperation(): void

ConcreteCompoent

Decorator

+doOperation(): void

+doOperation(): void

ConcreteDecoratorA

ConcreteDecoratorB

+doOperation(): void
+otherOperation(): void

+doOperation(): void
+otherOperation(): void

Implementation

=3 cyc2o018

IRITARREFSEAIIRE, IR LARINECK, ECanaLARINA-YS, FESHSsESHINETECR. SEn—wh

Eokl, ZIRERINSIAIEN, BXRTE—FPIRE N1,

TEZR/R1E DarkRoast IR EFHEHHARIN Mocha Egkl, Z/EXARINT Whip Bk, DarkRoast #
Mocha 8%, Mocha X# Whip B, BlIEHEBIERIRZE, & cost() ik, JNEFEMI cost() /5

EER T REZRAY cost() FiE.

(Youl sce how

6’/- 3 ‘ccw ?3555.)

g

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

e Whip calls cost() on Mocha.

o DarkRoast
returns its cost,

99 cents.
o Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. cents, to the result from

DarkRoast, and returns
the new total, $1.19.

public interface Beverage {
double cost();
}


af://n230

pubTlic class DarkRoast implements Beverage {
@override
public double cost() {
return 1;

pubTlic class HouseBlend implements Beverage {
@override
pubTlic double cost() {
return 1;

pubTlic abstract class CondimentDecorator implements Beverage {
protected Beverage beverage;

pubTlic class Milk extends CondimentDecorator {

public Milk(Beverage beverage) {
this.beverage = beverage;

@override
public double cost() {
return 1 + beverage.cost();

public class Mocha extends CondimentDecorator {

public Mocha(Beverage beverage) {
this.beverage = beverage;

@override
public double cost() {
return 1 + beverage.cost();

public class Client {

public static void main(string[] args) {
Beverage beverage = new HouseBlend();
beverage = new Mocha(beverage);
beverage = new Milk(beverage);
System.out.println(beverage.cost());



iR

SRRNZXSY BRI, IHEBCRE: EHERINFINRER AT RSN, IR LSRR INFAIECH,
MABEXIEBIRAEIRED.

O RECATARIRIRIT AERR X —RN, NIRRT a8 A REA 3RS

(@)K (Proxy)

FEMIFSIRH—FTPR IR A H XN T SRA1E,
EEEIR:

1. MEECHEDXE]: B R T RS S EXISRANEN, MR EEEE A ERRE
H.

2, FEEthERRIIRIXE: FEihEs RV T IE5RIEE, MCERENE N T IS,

Class Diagram
RIBBLITI:

o fE{CEE (Remote Proxy) : EHIXNEIENISR (AREIMEIEZE) BUGE, BRSEEREESEH
TR, HEARMBIZEFANSRAECEmIBHNEK.

o EHMLIE (Virtual Proxy) : IRIERECIEFHERANNSG, ErLAEFLAWINGR, LAMEE
IBXSEREE, FIanEmMIEnE—MERE i, gD 5Tk, TLABEIMREEFE IR
B8, AEER—KIGINEFREBRIEE .

o {RIFYKIE (Protection Proxy) : #ZAUREHINSAYAGRE, EREEEEARAEERREEIN—NE
KRGS AR,

o HEeLIE (Smart Reference) : BURTEERANEET, SEBENSRHIT LMHIMRIE: IERXT
SRS IARE; HEIRSIB—INERE, BEREART, @Ha— 1 LRNSRE, REEREE
HETE, MRREEUSRIENEE.

X «interface»
Client Subject

+doOperation(): void

: :'
. ",
. N
. .
N *

realSubject.doOperation(); Ij _________ Proxy RealSubject
+doOperation(): void +doOperation(): void
&3 cyc2018
Implementation
1. ELAe
2. RERE

3. FEFhAESSIERAEN
REESTEREABHENELARG, NELAHBNG ARG 7 —LabE,
RIGIE:


af://n241
af://n244
af://n249
af://n261

public class StaticProxy {
public static void main(string[] args) {
new weddingCompany(new You()) .happyMarry();

//new Thread(ZLFfEXI%) .srart();

interface Marry {
void happyMarry();

/B
class You implements Marry {
@override
pubTlic void happyMarry() {
System.out.printin("you and WA THEHT. . . ");

//ARF A
class weddingCompany implements Marry {
/ /B

private Marry target;

pubTlic weddingCompany(Marry target) {
this.target = target;

@override

pubTlic void happymarry() {
readyO;
this.target.happyMarry(Q);
after();

private void ready() {
System.out.printIn("ff&E#EE. . . ");

private void after() {
System.out.printIn("fLEf. . - ");

U2 NEMRIEISEI, &7 BRERINERIER MERSE R X/IMESHIGI RS XS IRRA
ER, BEIERIIHEEMASE R Bk,

public interface Image {

void showImage();

public class HighResolutionImage implements Image {

private URL imageURL;



private long startTime;
private int height;
private int width;

public int getHeight() {
return height;

pubTic int getwidth() {
return width;

pubTic HighResolutionImage(URL imageURL) {
this.imageURL = imageURL;
this.startTime = System.currentTimeMillis();
this.width = 600;
this.height = 600;

pubTlic boolean isLoad() {
// BRLER I, iR 3s fnEseAk
Tong endTime = System.currentTimeMillis();
return endTime - startTime > 3000;

@override
public void showImage() {
System.out.println("Real Image:

"

+ imageURL) ;

pubTlic class ImageProxy implements Image {
private HighResolutionImage highResolutionImage;

pubTic ImageProxy(HighResolutionImage highResolutionImage) {
this.highResolutionImage = highResolutionImage;

@override
public void showImage() {
while ('highResolutionImage.isLoad()) {
try {
System.out.println("Temp Image: " +
highResolutionImage.getwidth() + " " + highResolutionImage.getHeight());
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();

}

highResolutionImage.showImage();



public class Imageviewer {

pubTlic static void main(String[] args) throws Exception {
String image = "http://image.jpg";
URL url = new URL(image);
HighResolutionImage highResolutionImage = new HighResolutionImage(url);
ImageProxy imageProxy = new ImageProxy(highResolutionImage);
imageProxy.showImage();

@I

1)DKE RIS

2.CGLIB

3.ASMREERIES, AI4HPMERE)

ESESDHREEES

* R FOEREAREEE, FERREINEL
* R NMESFRBRIER EXIT5EIEE

* K
* ETFEORSME
* BT FRRIESHE
JDKEHRIBISAE
- java.lang.reflect.Proxy
*{ER: SISERACESSAINISR
- java.lang.reflect.InvocationHandler
* BILAEId invoke /3 AL ESL A E ARG E)
* BRIEIT Proxy £ IS SRATER T S EXI M AL IR BRI SR

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

public class client {
public static void main(string[] args) {

Realstar realStar = new RealStar();

StarHandler starHandler = new StarHandler(realStar);

Star proxy = (Star)
Proxy.newProxyInstance(ClassLoader.getSystemClassLoader(), new Class[]
{star.class}, starHandler);

proxy.sing(Q;

interface Star {


af://n273

void confer();

o

void colTlectMoney();

class Realstar implements Star {
@override
public void confer() {
System.out.printIn("Realstarfiz");

@override
public void signContract() {
System.out.printin("RealstarZ4H");

@override
public void bookTicket() {
System.out.printin("RealstarilZ");

@override
public void sing() {
System.out.println("RealStariE");

@verride
public void collectMoney() {
System.out.printIn("Realstarift");

class StarHandler implements InvocationHandler {
Star realstar;



public StarHandler(Star realstar) {

super(Q);
this.realstar = realstar;

}

@override
pubTlic Object invoke(Object proxy, Method method, Object[] args) throws
Throwable {
Object object = null;
System.out.printIn("EIEWEHATHI: ") ;
System.out.printIn("Hk, Z&H, Witk T%E");
if (method.getName() .equals("sing")) {
object = method.invoke(realstar, args);

}
System.out.printIn("EEMFEHRITE: ");
Ssystem.out.printIn("EH™) ;

return object;

B OISR
* BFEONARE:

* WRAYSE: Proxy
* BfitE: JDKES
* AI IR &R
* {FEFProxy2sAdnewProxylnstancefgi%
* QIR SRAYESK:
* WRIEBEROITH—MED, NRKENAEEFER

* newProxylnstancef5iEHIS£]:
* ClassLoader: ZEhN#EiEs
*EERATMEAENSRFHEN. MIENRERERENEEE. 5i%:

WARIBENTSR getClass().getClassLoader()
* Class[]: 15384
*ERATIRENSIIEAENSEERGE. BiE:

WIS getClass().getInterfaces()
* InvocationHandler: FAFHRALEEAIRD
* BRUERNBNERE, BiI—RBEL—MZEORNIIE, BEER MRERNERER, BA
BV, BiA:

new InvocationHandler() {

@override

pubTic Object invoke(Object proxy, Method method, Object[] args) throws
Throwable{

}

* IO RSCISER R IERIES.


af://n286

&0

public interface IProducer {
pubTlic void saleProduct(float money);
public void afterService(float money);

public class Producer implements IProducer{
pubTic void saleProduct(float money){
System.out.printIn("HEr= 5, HEHE: "+money);
}
public void afterService(float money){
System.out.printIn("#2{tEERS, HERE: "+money) ;

AR EES

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

public class Client {
public static void main(string[] args) {
/ /VEZ PRSI AR A R AR B D F na 14211
final Producer producer = new Producer();

IProducer proxyProducer = (IProducer) Proxy.newProxyInstance(
producer.getClass() .getClassLoader(),
producer.getClass() .getInterfaces(),
new InvocationHandler() {
Vi
* VER: ST R BT D T iE R G i% 0Tk
* ESE L
* @param proxy AREEXFRIGIH CRETEPFEARHES R UHE, —
FEASHD
* @param method HHiHTHIITIE
* @param args  HEIHATHIEE IS
* @return FYREX G756 A6 F 1R [BE
* @throws Throwable
*/
@override
public Object invoke(Object proxy, Method method, Object[]
args) throws Throwable {
/ /SR AR
Object returnvalue = null;
/ /1 T PAT IS4
Float money = (Float) args[0];
/72 FIW 4TI A R
if ("saleProduct".equals(method.getName())) {
[/BARERN RS, ARIRNS R 77 92 AR [ Ak (el 18
returnvalue = method.invoke(producer, money * 0.8f);
}

return returnvalue;


af://n294
af://n296
af://n298

3
D;
proxyProducer.saleProduct(10000f);

}

interface IProducer {
pubTlic void saleProduct(float money);

public void afterService(float money);

}

class Producer implements IProducer {
pubTlic void saleProduct(float money) {
System.out.printIn("# /=5, JFEHE: " + money);
3

public void afterservice(float money) {
System.out.printIn("# &R, HEHE: " + money);
}

B FRAIESE
* EFFRMAIE:

* WKAIZE: Enhancer

* RftE: B=FcglibkE, BIFEESANarE (mavenTIEFESAKIH)

<dependency>
<groupId>cglib</groupid>
<artifactid>cglib</artifactid>
<version>2.1_3</version>
</dependency>

* A elECERSR

* ffiflEnhancerZfficreate’iik
o QUEACTENT SR AR A i R
create NI S

* Class: =15
* CRATFIEEFRENSNFEDE. Bik:

WARIBENT SR getClass()
* Callback: FAFIRAHLIRAIRED
* BRI, FI—RERL—MNZEONIIE, BREER MIREZRERE, BF
IR,
* I ERORSCIEE R IERES.
* BA—REERi1ZzEORFEOSINZE: Methodinterceptor


af://n300

BE( A%

public class Producer {
public void saleProduct(float money){
System.out.printIn("#&/™f, JHFEFE: "+money) ;
}
public void afterservice(float money){
system.out.printIn("#&#t& 5k, JEEHE: "+money);

J8 LS

public class Client {
public static void main(Sstring[] args) {
final Producer producer = new Producer();
Producer cglibProducer = (Producer)Enhancer.create(
producer.getClass(),
new MethodInterceptor() {
/:‘::’:
* PAT PRI R M TR e A vk
* @param proxy
* @param method
* @param args
PLE =SSR T8 O 3SR i nvoke A M S 40E —FE
* @param methodProxy : 4HIHTITIERICELN &
* @return
* @throws Throwable
*/
@override
public Object intercept(Object proxy, Method method, Object[]
args, MethodProxy methodProxy) throws Throwable {
/ / FRAEHE R A
Object returnvalue = null;
/ /1 REUTEPAT IS4
Float money = (Float)args[O0];
/ /2. FI AR T AR A R
if("saleProduct".equals(method.getName())) {
returnvalue = method.invoke(producer, money*0.8f);
3

return returnvalue;

s
cglibProducer.saleProduct(12000f);


af://n307
af://n309

	单例模式（Singleton Pattern）
	实现
	1、懒汉式，线程不安全
	2、懒汉式，线程安全
	3、饿汉式
	4、双检锁/双重校验锁（DCL，即 double-checked locking）
	5、登记式/静态内部类
	6、枚举


	简单工厂（Simple Factory）
	Class Diagram
	Implementation

	工厂方法（Factory Method）
	Class Diagram
	Implementation

	4抽象工厂（Abstract Factory）
	Class Diagram
	Implementation

	观察者（Observer）
	Class Diagram
	Implementation
	通过obserable类和observer接口实现观察者模式

	策略（Strategy）
	Class Diagram
	与状态模式的比较
	Implementation

	模板方法（Template Method）
	Class Diagram
	Implementation

	适配器（Adapter）
	Class Diagram
	Implementation

	装饰（Decorator）
	Class Diagram
	Implementation
	设计原则

	(静态)代理（Proxy）
	Class Diagram
	Implementation

	(动态)代理
	基于接口的动态代理
	接口
	实现类
	代理类

	基于子类的动态代理
	需要代理的类
	代理类



