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SingletonPatternDemo

+ main(} : void

RELME—HIT &

¥ iZ[E]
SingleObject

- instance: SingleObject

- SingleObject()
+ getinstance() : SingleObject
+ showMessage() : void

1. WiXaN, &iEARS
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IR IS EAE. FAIREMS synchronized, FILAIFEENX EEHAERAIEL,

public class Singleton {
private static Singleton instance;
private Singleton (){
}

pubTlic static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();

}

return instance;

}
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public class Singleton {
private static Singleton instance;
private Singleton O{}
pubTlic static synchronized Singleton getInstance() {
if (instance == null) {
instance = new Singleton();

3

return instance;

}

3. IHiNzV
=5 Lazy iat: &
SSHERS: B

=

iR XMAOXCRER, BRBr-ELRIs.,

i REME, PITHERRES.

B RGBT, IRERE.

BET classloader HliHE%R T ZLEENRELEE, Aid, instance FEFSEHRIIHLAML, BRBEEE
EHNERBREZM, ERAMEHASEERER getinstance /5i%, (BREABHEEEMA
(HEBEAMRFRSTER) SEEEEE, XIHREYIIAW instance BFAIZHIAE! lazy loading BIZIER.

public class Singleton {
private static Singleton instance = new Singleton();
private Singleton (Q{}
public static Singleton getInstance() {
return instance;

}

4, WASHI/INERISH (DCL, BP double-checked locking)
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public class Singleton {
private volatile static Singleton singleton;
private Singleton (){
}
pubTlic static Singleton getSingleton() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();

}
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return singleton;
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if 56, BAMNEATESHEN IfIBEQRA, BRE IN I EORABIBERE, BERNMIZESIT
singleton= new Singleton(); X&KiEM, REFEMAE, BAMSHITRRLONL. BELLLRE
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if (singleton == null) {
synchronized (Singleton.class) {
singleton = new Singleton();

3
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pubTlic class Singleton {
private static class SingletonHolder {
private static final Singleton INSTANCE = new Singleton();

3

private Singleton O{}

pubTlic static final Singleton getInstance() {
return SingletonHolder.INSTANCE;

6, e

JDK RR&: JDK1.5 %2
25 Lazy Miatk: &
RESGERS: B

SEIME: 5

iR XML ANRREH ZXE, EXELURFEXNNRESZE. CEEE, BIsHEHFII
HUHI, #a3385 152 RLBHL.

XF 2 Effective Java fE& Josh Bloch 12EMIAT, ENMNEEERZLRERLAE, MEXBRI
BRSWCIE, BhLERFFICEFRCIEMAINTSR, EXIprlEZREfIL. A2, BTF JDK1.S ZFBEAMA
enum 5, XA RXBEABILARBGER, ELhrIEF, tBRIOMA.

Agei@id reflection attack SRIARFABIIE A,

pubTlic enum Singleton {
INSTANCE;

private String objName;

public String getObjName() {
return objName;

pubTlic void setObjName(String objName) {
this.objName = objName;

public static void main(String[] args) {
// EAI
Singleton firstSingleton = Singleton.INSTANCE;
firstSingleton.setobjName("firstName™);
System.out.printin(firstSingleton.getobjName());
Singleton secondSingleton = Singleton.INSTANCE;
secondSingleton.setObjName("secondName");
System.out.println(firstSingleton.getobjName());
System.out.println(secondSingleton.getobjName());

/7RG SRS
try {
Singleton[] enumConstants = Singleton.class.getEnumConstants();
for (Singleton enumConstant : enumConstants) {
System.out.println(enumConstant.getObjName());


af://n68

} catch (Exception e) {
e.printStackTrace();
}
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BT (Simple Factory)
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«interface»
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Concrete Product | _ SimpleFactory
tcreates +createProduct(): Product
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Implementation

18— N

2. Bl S NI ORISR,

3RIE—NIT, BE—IVGE, ZAEETAES MR ALK,
AfERIZIT, B EERER SRR IIRI R,

//1. B —AEn
interface Product {

3

//2 A3 LI R SEAR R
class ConcreteProduct implements Product {

}

class ConcreteProductl implements Product {

3

class ConcreteProduct2 implements Product {

}

//3 TR T SEIL, ST A AT LML R T SRR A
class SimpleFactory {

public Product createProduct(int type) {
if (type == 1) {
return new cConcreteProductl();
} else if (type == 2) {
return new ConcreteProduct2();

}
return new concreteProduct();
}
}
//4 T

public class Client {

pubTlic static void main(String[] args) {
SimpleFactory simpleFactory = new SimpleFactory();
Product product = simpleFactory.createProduct(l);
// do something with the product

LUTEY Client 2EETEAMCAINRE, XE—FMERAISTIL. MMREZFEPFEXMIONCHED, =
HEEZEBABEEEBRI 4,

public class Client {

public static void main(string[] args) {
int type = 1;
Product product;
if (type == 1) {
product = new ConcreteProductl();
} else if (type == 2) {
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product = new ConcreteProduct2();
} else {
product = new ConcreteProduct();

}
// do something with the product

I/ 5% (Factory Method)

EXT— M EIEMRAYED, (BERFRREELGMLIBNE. T 5iEBENR RT3,
Class Diagram

EEIET &, BIBMKRRIER MK, MEL] 5iE+, EHFEREIENSR.

TEH, Factory — doSomething() /5%, XNAEBERZI—IN"RANR, XN T=mII%RH
factoryMethod() 75i&EUFE. ZAEAERMERN, FERFSEETLH,

«interface» Factory void doSomethig() {
Product — . product = factoryMethod();

+factoryMethod(): Product // do something with the product

Z> +doSomething(): void }

' ConcreteFactory Product factoryMethod() {
ConreteProduct| .  + — ——— — — | . return new ConcreteProduct();
+factoryMethod(): Product }
&8 cyc2018
Implementation

1. B (HERR)

2. BUERORY BRI

3. SO NAY T

4. F—MEOXYMNAISEHISRER S — N S EXI A T SEIEE

public abstract class Factory {
abstract public Product factoryMethod();
public void doSomething() {
Product product = factoryMethod();
// do something with the product

pubTlic class ConcreteFactory extends Factory {
pubTic Product factorymethod() {
return new ConcreteProduct();

3
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public class ConcreteFactoryl extends Factory {
pubTic Product factoryMmethod() {
return new cConcreteProductl();

}

public class ConcreteFactory?2 extends Factory {
pubTic Product factorymethod() {
return new cConcreteProduct2();

}

pubTlic class Client{
pubTlic static void main(String[] ags){
Factory cfl=new ConcreteFactory().factoryMmethod();
Factory cf2=new ConcreteFactoryl().factoryMethod();
Factory cf3=new ConcreteFactory2().factorymethod();

4

ST~ (Abstract Factory)

RBMH—NMED, AT EEXMNRRE .

Class Diagram
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ST SRR T I FAEAKEEE XI5, AbstractFactory Y createProductA() #1

createProductB() F5iEEBRILEFERKEL, XA NAERIMREMETIE— ISR, XFEIL A%
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NEBERFKE, Mg (FATHESE, B Cilent ZHE T AbstractFactory, ML) FiEtETERA T 4
7K,

AbstractFactory

Client

+createProductA(): AbstractProductA
+createProductB(): AbstractProductB

N DN

ConcreteFactoryl ConcreateFactory2 AbstractProductA AbstractProductB
+createProductA(): AbstractProductA +createProductA(): AbstractProductA
+createProductB(): AbstractProductB +createProductB(): AbstractProductB ﬁ K ﬁ K
ProductAl ProductA2 ProductB1 ProductB2

[ ]
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Implementation

TSN RE (AJARSESL/RO/MMSRE)
25— RR (BESRO/MMSRE) WNEMSMARRIRTR
3.EURT K (MZSE/EN) |, BENE— T mEEIESE

48RS LT LUK, SNCIRTHARN~RTFENES

//1 B2 A= 2R

class AbstractProductA {
}

class AbstractProductB {

}

//2 A= R

class ProductAl extends AbstractProductA {
}

class ProductA2 extends AbstractProductA {
}

class ProductBl extends AbstractProductB {
}

class ProductB2 extends AbstractProductB {
}

/3. BT 2k g/, BRSNS T
abstract class AbstractFactory {
abstract AbstractProductA createProductA();
abstract AbstractProductB createProductB();

//4 BRI Z AT SeBisk
concreteFactoryl extends AbstractFactory {
AbstractProductA createProductA() {
return new ProductAl(Q);
}
AbstractProductB createProductB() {
return new ProductBl();

}
ConcreteFactory?2 extends AbstractFactory {
AbstractProductA createProductA() {
return new ProductA2();

AbstractProductB createProductB() {
return new ProductB2();
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public class Client {
public static void main(string[] args) {
AbstractFactory abstractFactory = new ConcreteFactoryl();
AbstractProductA productA = abstractFactory.createProductA(Q);
AbstractProductB productB = abstractFactory.createProductB();
// do something with productA and productB

=

//ATERAN R —AEE

pubTlic interface Shape {
void draw();

}

//RBELIE— AR,

public interface Color {
void fi11Q);

/ /B TR L SR
public class Rectangle implements Shape {
@override
public void draw() {
System.out.println("Inside Rectangle::draw() method.");

3

public class Square implements Shape {

@override
public void draw() {
System.out.printin("Inside Square::draw() method.");

}

public class Circle implements Shape {

@override
public void draw() {
System.out.printin("Inside Circle::draw() method.");

/ /B S O SR .
public class Red implements Color {

@override
pubTic void fi11Q) {
System.out.printin("Inside Red::fi11() method.");

}

public class Green implements Color {

@override
pubTic void fi11Q) {
System.out.printin("Inside Green::fil1() method.");



}

public class Blue implements Color {

@override
public void fi11Q {
System.out.printin("Inside Blue::fi11() method.");

//N Color #il Shape X% €@ G IR .

public abstract class AbstractFactory {
pubTlic abstract Color getColor(String color);
pubTlic abstract Shape getShape(String shape) ;

//BIEY BT AbstractFactory FIRT.) 28, FEF4HENME BABRSZARERIN R .
public class ShapeFactory extends AbstractFactory {

@override
public Shape getShape(String shapeType){
if(shapeType == null){
return null;
}
if(shapeType.equalsIgnoreCase("CIRCLE")){
return new Circle(Q);
} else if(shapeType.equalsignoreCase("RECTANGLE")){
return new Rectangle();
} else if(shapeType.equalsIgnorecCase("SQUARE")) {
return new Square();

}

return null;
}
@override

pubTlic Color getColor(String color) {
return null;

}
//BVEY BT AbstractFactory MEIET) 28, FET4HEMEBARSRERIN R .
public class ColorFactory extends AbstractFactory {

@override
pubTic Shape getShape(String shapeType){
return null;

@override
pubTlic Color getColor(string color) {
if(color == null){
return null;
}
if(color.equalsignorecase("RED")){
return new Red();
} else if(color.equalsignoreCase("GREEN")){
return new Green();
} else if(color.equalsignoreCase("BLUE")){



return new Blue();

}

return null;

/7B AN G A/ AR A S, iR I TR B (E BRI AT
public class FactoryProducer {
pubTlic static AbstractFactory getFactory(String choice){
if(choice.equalsignorecase("SHAPE")){
return new ShapeFactory();
} else if(choice.equalsIgnoreCase("COLOR™)){
return new ColorFactory();

}

return null;

//1iH FactoryProducer K3RH( AbstractFactory, it &isER(E HRIRE LRI & .
public class AbstractFactoryPatternbemo {
public static void main(String[] args) {

//RBUER T
AbstractFactory shapeFactory = FactoryProducer.getFactory("SHAPE");

//FBUER N Circle HIXT%
Shape shapel = shapeFactory.getShape("CIRCLE");

//H Circle B draw ik
shapel.draw();

//3EBUEIR N Rectangle (X%
Shape shape2 = shapeFactory.getShape("RECTANGLE");

//H Rectangle (¥ draw Jji%
shape2.draw();

J/FBIER N Square HIXTER
Shape shape3 = shapeFactory.getShape("SQUARE");

//WH square ) draw Jyik
shape3.draw();

//AREEE T
AbstractFactory colorFactory = FactoryProducer.getFactory("COLOR");

//3EEIE N Red IR S
Ccolor colorl = colorFactory.getColor("RED");

// WA Red 1 Fi11 Hik
colorl.fi11Q);

//FWEE N Green X%
Color color2 = colorFactory.getColor("Green");

// WA Green ) fi11 J7ik



color2.fi11Q0);

/RGN Blue X4
color color3 = colorFactory.getColor("BLUE");

//WH Blue 1 i1l Jiik
color3.fil11Q);

}

MERE (Observer)

EXHRZEI—ISMKI, S— I HSRSHER, SREREESREIBINAHBEBHNEFRE.
FEBE (Subject) EHRNMZRAINIR, MEBEHKEE (Observer) FRAMERE.

ONE TO MANY RELATIONSH|P

Obiect that >

holjds state

Automaflf. ufda‘[:C/ ho'[:i-Ficaﬁoh

Class Diagram

F (Subject) EAEFMIIRMRMNES. HBXIFAEWEENIIIEE, F&
SCHIXLSHRERY,

WMz=E (Observer) BYEATHEEZEEATAAY registerObserver() /i,

BB —KINERETIRE

Implementation
(RelicEs ez im)
2. SEMERE O
3. QU ERERSTINEE, RRUIT:
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1.MmETIR
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2 MR R T2

T3
1iEM. iR, BRIMEMERETA(notifyObserver&ifobservefupdatesiX)
2 3HEMBRRIR R EHTIRE, FRBEBMAENERE T A(notifyObserven)i73i%

4 BB ESTIE, BE— " EHITIENIZIN

pubTlic interface Subject {
void registerobserver(Observer o);

void removeObserver(Observer o0);

void notifyobserver();

pubTlic class wWeatherData implements Subject {
private List<Observer> observers;
private float temperature;
private float humidity;
private float pressure;

public weatherbData() {
observers = new ArrayList<>();

public void setMeasurements(float temperature, float humidity, float
pressure) {
this.temperature = temperature;
this.humidity = humidity;
this.pressure = pressure;
notifyobserver();

@override
pubTlic void registerobserver(Observer o) {
observers.add(o);

@override
public void removeObserver(Observer o) {
int i = observers.indexof(o);
if (i >=0) {
observers.remove(i);

@override
pubTic void notifyobserver() {
for (Observer o : observers) {
o.update(temperature, humidity, pressure);



public interface Observer {
void update(float temp, float humidity, float pressure);

public class StatisticsDisplay implements Observer {
public StatisticsDisplay(Subject weatherbData) {

weatherData.reisterobserver(this);

@override
public void update(float temp, float humidity, float pressure) {

System.out.println("StatisticsDisplay.update: " + temp + " " + humidity
+ " " + pressure);
}
}
pubTlic class CurrentConditionsDisplay implements Observer {
pubTic CurrentConditionsDisplay(Subject weatherData) {
weatherbData.registeroObserver(this);
}
@override
pubTlic void update(float temp, float humidity, float pressure) {
System.out.println("CurrentConditionsDisplay.update: " + temp + " " +

humidity +
}

+ pressure);

pubTlic class weatherStation {
public static void main(string[] args) {
wWeatherbData weatherData = new wWeatherData();
CurrentConditionsDisplay currentConditionsDisplay = new
CurrentConditionsDisplay(weatherData);
StatisticsDisplay statisticsDisplay = new
StatisticsDisplay(weatherbata);

weatherData.setMeasurements(0, 0, 0);
weatherData.setMeasurements(l, 1, 1);

import java.util.ArrayList;
import java.util.List;

pubTlic class client {
public static void main(string[] args) {

ConcreteSubject subject = new ConcreteSubject();
ObserverA a = new ObserverA(Q);
ObserverA b = new ObserverA(Q);
ObserverA c = new ObserverA(Q);
/ /IR = ME LR INF subject i R I & E 4 4
subject.registerobserver(a);



subject.registerobserver(b);
subject.registerobserver(c);

/ /A8 subjectipIRAS

subject.setState(3000);
System.out.print]n(”***************************")
/ /BB MERE AR A
System.out.println(a.getMyState());
System.out.println(b.getMyState());
System.out.printin(c.getMyState());

class Subject {
private List<Observer> Tlist = new ArrayList<>();

public void registerObserver(Observer obs) {
Tist.add(obs);

public void removeObserver(Observer obs) {
int i = list.indexof(obs);

if (3 >=0) {
Tist.remove(i);

public void notifyobserver() {
for (Observer o : Tist) {
o.update(this);

interface Observer {
void update(Subject subject);

class ConcreteSubject extends Subject {
private int state;

public int getState() {
return state;

public void setState(int state) {
this.state = state;
this.notifyobserver();

class ObserverA implements Observer {
private int myState;//myStateds ZiR Hirx R fstatefdffHF—i



@override
pubTlic void update(Subject subject) {
myState = ((ConcreteSubject) subject).getState();

public int getMyState() {
return mysState;

public void setMyState(int myState) {
this.myState = myState;

EidobserableZflobserveriE[EINE Eiax

1. ERERY¥FKObservablezt, BENXJ5EREMNotifyObservers

2. BAMERESLH Observerz [, ESupdate5ik

import java.util.observable;
import java.util.Observer;

public class client {
public static void main(string[] args) {
concreteSubject subject = new ConcreteSubject();
ObserverA a = new ObserverA(Q);
ObserverA b = new ObserverA(Q);
ObserverA c = new ObserverA(Q);
[ /X ZAIEE L A I E subj ectXt RIMLEE 0 & o
subject.addobserver(a);
subject.addobserver(b);
subject.addobserver(c);

/ /% subjectfPIRAS

subject.setState(3000);

System.out. printTn ("o oo dol ool ool 1) ©
/ /BB MEE AR KA
System.out.println(a.getMyState());
System.out.printin(b.getMyState());
System.out.println(c.getMyState());

VVAERVSE
class ConcreteSubject extends Observable {
private int state;

public int getState() {
return state;

public void setState(int state) {
this.state = state;//H RIS KAE T 8%
setChanged Q) ; //#/R Hbsx R &M 7 o
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notifyobservers(this.state);//iliIL W EH

class ObserverA implements Observer {
private int myState;//myState s Z IR Hirxf & )statef i —ik

public int getMyState() {
return myState;

}

public void setMyState(int myState) {
this.myState = myState;

}

@override

public void update(Observable o, Object arg) {
myState = ((ConcreteSubject) o).getState();

RHg (Strategy)

EX—FIEE, HRENEE FAEe(ILUER,
RISRIVAT UL RIS TR ERE P,

Class Diagram

e Strategy BMOENXT—1NEiXl&, BAJESSCIL Y behavior() 75i%.

o Context 2(FRENIZEIERAVZE, HAAY doSomething() /A& 18R behavior(),
setStrategy(Strategy) F5iEA] LAZIZSHINET strategy X9, tBFLRiREENSBEEE Context FifE
J==[: 1= 07

Context «interface»

Strategy

+strategy: Strategy

+doSomething(): void

+hehavior(): void

+setStrategy(Strategy): void

strategy.behavior(); [T

ConcreteStrategyA

+hehavior(): void

ConcreteStrategyB

+hehavior(): void

#"§ cycz018
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SINSIRIARIELE

KSRV EFNSRIER S, H BRSNS HENSRA T, ERKSEXRBIRSERFR
& Context FTZEARY State XI5, MRISEINRIET Context ASANAFRBZHSH] Strategy X
5. FMBAORSERE, 218 Context FEB{THREPHT —LRMEERZMES State WEEEKEE,
FRWREREIETIIRES.

SR TERARMBRINSHERNRE, BRERERRE T, B4 Context WERMAEKERERITA;
MERBENEERARE R AT UEEBNEER, FEULURERENS AR Context £
REE.

Implementation

RI—MEF, BRSNS, XENEERES FRINETA.

public interface QuackBehavior {
void quack();
}

public class Quack implements QuackBehavior {
@override
public void quack() {
System.out.println("quack!");
3

public class Squeak implements QuackBehavior{
@override
public void quack() {
System.out.println("squeak!");
}

public class Duck {
private QuackBehavior quackBehavior;

pubTlic void performQuack() {
if (quackBehavior != null) {
quackBehavior.quack();
}
}

pubTlic void setQuackBehavior(QuackBehavior quackBehavior) {
this.quackBehavior = quackBehavior;

3
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public class Client {

public static void main(string[] args) {
Duck duck = new bDuck();
duck.setQuackBehavior(new Squeak());
duck.performquack();
duck.setQuackBehavior(new Quack());
duck.performquack();

squeak!
quack!

FRABRIERC

* OSPLERIVRA S, eI RN RN
* fet, ﬁéﬁ”ﬁTEU‘/, FELCR R0, A FATE A AT AR, MET- 4.
ARG RAY, R B S U AR AT !
© AT TR
*/
class TestStrategy {
pubTlic double getPrice(String type, double price) {
if (type.equals("Hil% )/ MitE")) {
System.out.printIn("A4THr, EAH") 5
return price;
} else if (type.equals("IFE%& /P AHMHE™)) {
System.out.printIn("4T /L") ;
return price * 0.9;
} else if (type.equals("ZZ /1 tE™)) {
system.out.printin("+I/\EHI");
return price * 0.85;
} else if (type.equals("Z&/ kit®E")) {
Ssystem.out.printin("#/\H");
return price * 0.8;

}
return price;
}
}
KRR

public class client {
public static void main(Sstring[] args) {
Strategy sl = new OldCustomerFewStrategy();
context ctx = new Context(sl);
ctx.printPrice(998);

interface Strategy {



public double getPrice(double standardPrice);

class NewCustomerFewStrategy implements Strategy {

@override

pubTlic double getPrice(double standardPrice) {
system.out.printIn("A4TH#, JEMN");
return standardPrice;

class NewCustomerManyStrategy implements Strategy {

@override

pubTic double getPrice(double standardPrice) {
System.out.printIn("fT L") ;
return standardPrice * 0.9;

class oOldCustomerFewStrategy implements Strategy {

@override

pubTlic double getPrice(double standardPrice) {
system.out.printIn("47/\HIE™) ;
return standardpPrice * 0.85;

class oldCustomerManyStrategy implements Strategy {

@override

pubTlic double getPrice(double standardPrice) {
System.out.printIn("fI/\#1");
return standardPrice * 0.8;

3

}
Vol

* U R AR SRR B

*ORXRERTE, BARMSEM BRI E A O B T, AR ST DO S T P s A R AR

< WRAE R springMKIEADIRE, AT LUEE R E SO, SIAKREANFSIS R, s MY R R
ac

3

class Context {
private Strategy strategy; //Xni i E N5

/ /7T LI H i ek
public Context(Strategy strategy) {

super(Q);
this.strategy = strategy;

/ /A PLEE set idskiEAN
public void setStrategy(Strategy strategy) {



this.strategy = strategy;
}

public void printPrice(double s) {
System.out.printIn("&iZififh: " + strategy.getPrice(s));

}

{EtR7% (Template Method)

EXEAER, FARB—LLRAVSCIEREIFL,
BIERSE, FRUUENENEEZNRLESER, MARSEEENE.

Class Diagram

. AN
AbstractClass public void templateMethod() {
- primitiveOperationA();
+templateMethod(): void ~ |=======m=eee
+primitiveOperationA(): void primitiveOperationB();
+primitiveOperationB(): void }
ConcreteClass
+primitiveOperationA(): void
+primitiveOperationB(): void
&3 cyc2018
Implementation
IRMEERDPFREPERATRE, (ERFLSBESERA—F, ERERPLAERSERIM,
Coffee Tea
void prepareRecipe () { void prepareRecipe () {
boilWater () boilWater();
brewCoffeeGrinds () ; & — = steepTeaBag () ;
pourInCup(); pourInCup();

addSugarAndMilk(); &——>~—————3 addLemon();

} }

pubTlic abstract class cCaffeineBeverage {

final void prepareRecipe() {
boilwater();
brew();
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pourInCup();
addcondiments();

abstract void brew();
abstract void addCondiments();

void boilwater() {
System.out.printin("boilwater");

void pourincup() {
System.out.printin("pourInCup");

pubTlic class Coffee extends CaffeineBeverage {
@override
void brew() {
System.out.println("Coffee.brew");

@override
void addcondiments() {
System.out.println("Coffee.addCondiments");

pubTlic class Tea extends CaffeineBeverage {
@override
void brew() {
System.out.printin("Tea.brew");

@override
void addcondiments() {
System.out.printin("Tea.addCondiments");

pubTlic class Client {
public static void main(string[] args) {
CaffeineBeverage caffeineBeverage = new Coffee();
caffeineBeverage.prepareRecipe();
System.out.printin("------————-—- Dk
caffeineBeverage = new Tea();
caffeineBeverage.prepareRecipe();



boilwater
Coffee.brew
pourInCup
Coffee.addCondiments
boilwater

Tea.brew

pourInCup
Tea.addCondiments

public class client {
public static void main(String[] args) {

BankTemplateMethod btm = new DrawMoney();

btm.process();

/ /K4 N

BankTemplateMethod btm2 = new BankTemplateMethod() {
@override
public void transact() {

System.out.printin("FEFEL") ;

IFg
btm2.process();

abstract class BankTemplateMethod {
// BAT5:
public void takeNumber() {
system.out.printTn("HUSFEBL™) ;

public abstract void transact(); ///p¥EARINLS / /81 51k

public void evaluate() {
System.out.printIn("iFiEs") ;

Vai

*OBUR TR (R AREA S i, TR BAREDS

*/

public final void process() {
this.takeNumber();
this.transactQ);//BAT . AT, FEEAST- 206 75720 18 A s/
this.evaluate();

* HGRTR
*/
class DrawMoney extends BankTemplateMethod {
@override
public void transact() {
system.out.printIn("FRELE™) ;



1&Eficgy (Adapter)

£B—

PMREOEIRAS— AR REEO.

The adapter implements the
interface Your ¢lasses :KP:H:

Class Diagram

Your Adapter
Existing
System

Bnd talks o the vender !

Lo sevvite Your

Vendor
Class

h‘hﬁ'f"; ate

ygﬂuts

Adapter

Implementation

Client Target
_________________ >
+request()
Adaptee
adaptee.specificRequst()
+request()

+specificRequst()

&9 CyC2018

F8F (Duck) FOK3B (Turkey) HBEABAINUE, Duck RIMUETERE quack() 5i%, i Turkey JEFE

gobble() 73i&.

ERIE Turkey B9 gobble() 753XI&ERCAK Duck B9 quack() /5%, MMM XS E s+ !

public interface bDuck {
void quack(Q);
}

pubTlic interface Turkey {
void gobble();
}
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public class wildTurkey implements Turkey {
@override
public void gobble() {
System.out.println("gobble!");

pubTlic class TurkeyAdapter implements Duck {
Turkey turkey;

public TurkeyAdapter(Turkey turkey) {
this.turkey = turkey;

@override
public void quack() {
turkey.gobble();

public class Client {
public static void main(string[] args) {
Turkey turkey = new WildTurkeyQ);
buck duck = new TurkeyAdapter(turkey);
duck.quack(Q);

SCIR2:
Fit:

1. B— MediaPlayer #OF0—ANSEHL Y MediaPlayer ¥ ORISEIRSE AudioPlayer, ERAERT,
AudioPlayer BTLARERL mp3 180,

2. BB—MEO AdvancedMediaPlayer F0SEHL Y AdvancedMediaPlayer ¥ IRISEIRSE, 12250 LARE
B vic #0 mp4 1&AIS14.

3K 1k AudioPlayer SERIEMAS RIS SUL.

R RIE—SCIL T MediaPlayer ¥ OANERBCEESE MedioAdapter, FHER AdvancedMediaPlayer X3
SCRIEMATRAUER.

1.€IE#MediaPlayer, AdvancedMediaPlayerf&[]
2.8lJ#AdvancedMediaPlayersCIisE
3.8lEMediaPlayeriEfisesk

4.8lEMediaPlayerSLRSSHHERIERCRRSS, (EEALABIEMEZIRIEI Y

public class AdapterpPatternDemo {
pubTlic static void main(String[] args) {
AudioPlayer audioPlayer = new AudioPlayer();

audioPlayer.play("mp3", "beyond the horizon.mp3");
audioPlayer.play("mp4", "alone.mp4");



audioPlayer.play("vlc", "far far away.vlc");
audioPlayer.play("avi", "mind me.avi");

* 1L 1O AR A D
:':/
interface MediaPlayer {
public void play(String audioType, String fileName);

1. 200 AR R AR
i
interface AdvancedMediaPlayer {
pubTlic void playvlc(string fileName);
pubTlic void playMp4(String fileName);

}
/ EE S
* 2. 1f6l#AdvancedMediaPlayer sk Fikvic) .
*/
class VicPlayer implements AdvancedMediaPlayer{
@override
public void playvlc(string fileName) {
System.out.printin("Playing vlc file. Name: "+ fileName);
}
@override
pubTlic void playMp4(String fileName) {
/ /2 WA
}
}

* 2.206l#AdvancedMediaPlayer: Hffseih2s (Fikmpd) .
:':/

class Mp4Player implements AdvancedMediaPlayer{

@override
pubTlic void playvlc(string fileName) {
/ /2 WA

@override
pubTlic void playmMp4(string fileName) {
System.out.printin("Playing mp4 file. Name: "+ fileName);

* 3. fildMediaPlayer &R REE.
'.':/
class MediaAdapter implements MediaPlayer {

AdvancedMediaPlayer advancedMusicPlayer;

pubTlic MediaAdapter(String audioType){



if(audioType.equalsignorecCase("vlc") ){
advancedMusicPlayer = new VlcPlayer();

} else if (audioType.equalsIgnorecCase("mp4™)){
advancedMusicPlayer = new Mp4Player();

@override
pubTlic void play(String audioType, String fileName) {
if(audioType.equalsignorecCase("vlc")){
advancedMusicPlayer.playvlc(fileName);
}else if(audioType.equalsignoreCase("mp4")){
advancedMusicPlayer.playMp4 (fileName);

4. fil#MediaPlayer %A 92A

LR F AT DURR SO At A 2 A

:':/
class AudioPlayer implements MediaPlayer {
MediaAdapter mediaAdapter;

@verride
public void play(string audioType, String fileName) {

J/REIL mp3 AR SCIRI A B SCRE
if(audioType.equalsIgnorecase("mp3")){
System.out.printin("Playing mp3 file. Name: "+ fileName);
3
//mediaAdapter $Eft 7R SRS AT SR
else if(audioType.equalsIgnoreCase("vlc")
|| audioType.equalsIgnoreCase("mp4")){
mediaAdapter = new MediaAdapter(audioType);
mediaAdapter.play(audioType, fileName);

}
else{
System.out.println("Invalid media. "+
audioType + " format not supported");
3

Z=i® (Decorator)
FXIRENZSRINTIRE,

Class Diagram

#im& (Decorator) FNIE{KRZE{E (ConcreteComponent) #3t&EAH (Component) , B{REH
NEENASEKRRTHENSR, MEMEES T — AN, XFerlEmHeErESEBRARE
1¢ Frig%in, MEEXNEREEEHENEZ L, WMoY EREEinEfThee. EinENAEEE
o EECH, _'_E:.FGEI‘JDJE& AETEIFHEEIRERYZIASCEL, MIMtE(RER 7 #EEim & AIThEE. &
L‘J\E I, BEARHFMEERNERNREER, EBARBEAEHNAEIAZTERHTEENSR.
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«interface»
Component

+doOperation(): void

ConcreteCompoent

Decorator

+doOperation(): void

+doOperation(): void

ConcreteDecoratorA

ConcreteDecoratorB

+doOperation(): void
+otherOperation(): void

+doOperation(): void
+otherOperation(): void

Implementation

=3 cyc2o018

IRITARREFSEAIIRE, IR LARINECK, ECanaLARINA-YS, FESHSsESHINETECR. SEn—wh

Eokl, ZIRERINSIAIEN, BXRTE—FPIRE N1,

TEZR/R1E DarkRoast IR EFHEHHARIN Mocha Egkl, Z/EXARINT Whip Bk, DarkRoast #
Mocha 8%, Mocha X# Whip B, BlIEHEBIERIRZE, & cost() ik, JNEFEMI cost() /5

EER T REZRAY cost() FiE.

(Youl sce how

6’/- 3 ‘ccw ?3555.)

g

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

e Whip calls cost() on Mocha.

o DarkRoast
returns its cost,

99 cents.
o Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. cents, to the result from

DarkRoast, and returns
the new total, $1.19.

public interface Beverage {
double cost();
}
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pubTlic class DarkRoast implements Beverage {
@override
public double cost() {
return 1;

pubTlic class HouseBlend implements Beverage {
@override
pubTlic double cost() {
return 1;

pubTlic abstract class CondimentDecorator implements Beverage {
protected Beverage beverage;

pubTlic class Milk extends CondimentDecorator {

public Milk(Beverage beverage) {
this.beverage = beverage;

@override
public double cost() {
return 1 + beverage.cost();

public class Mocha extends CondimentDecorator {

public Mocha(Beverage beverage) {
this.beverage = beverage;

@override
public double cost() {
return 1 + beverage.cost();

public class Client {

public static void main(string[] args) {
Beverage beverage = new HouseBlend();
beverage = new Mocha(beverage);
beverage = new Milk(beverage);
System.out.println(beverage.cost());



iR

SRRNZXSY BRI, IHEBCRE: EHERINFINRER AT RSN, IR LSRR INFAIECH,
MABEXIEBIRAEIRED.

O RECATARIRIRIT AERR X —RN, NIRRT a8 A REA 3RS

(@)K (Proxy)

FEMIFSIRH—FTPR IR A H XN T SRA1E,
EEEIR:

1. MEECHEDXE]: B R T RS S EXISRANEN, MR EEEE A ERRE
H.

2, FEEthERRIIRIXE: FEihEs RV T IE5RIEE, MCERENE N T IS,

Class Diagram
RIBBLITI:

o fE{CEE (Remote Proxy) : EHIXNEIENISR (AREIMEIEZE) BUGE, BRSEEREESEH
TR, HEARMBIZEFANSRAECEmIBHNEK.

o EHMLIE (Virtual Proxy) : IRIERECIEFHERANNSG, ErLAEFLAWINGR, LAMEE
IBXSEREE, FIanEmMIEnE—MERE i, gD 5Tk, TLABEIMREEFE IR
B8, AEER—KIGINEFREBRIEE .

o {RIFYKIE (Protection Proxy) : #ZAUREHINSAYAGRE, EREEEEARAEERREEIN—NE
KRGS AR,

o HEeLIE (Smart Reference) : BURTEERANEET, SEBENSRHIT LMHIMRIE: IERXT
SRS IARE; HEIRSIB—INERE, BEREART, @Ha— 1 LRNSRE, REEREE
HETE, MRREEUSRIENEE.

X «interface»
Client Subject

+doOperation(): void

: :'
. ",
. N
. .
N *

realSubject.doOperation(); Ij _________ Proxy RealSubject
+doOperation(): void +doOperation(): void
&3 cyc2018
Implementation
1. ELAe
2. RERE

3. FEFhAESSIERAEN
REESTEREABHENELARG, NELAHBNG ARG 7 —LabE,
RIGIE:
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public class StaticProxy {
public static void main(string[] args) {
new weddingCompany(new You()) .happyMarry();

//new Thread(ZLFfEXI%) .srart();

interface Marry {
void happyMarry();

/B
class You implements Marry {
@override
pubTlic void happyMarry() {
System.out.printin("you and WA THEHT. . . ");

//ARF A
class weddingCompany implements Marry {
/ /B

private Marry target;

pubTlic weddingCompany(Marry target) {
this.target = target;

@override

pubTlic void happymarry() {
readyO;
this.target.happyMarry(Q);
after();

private void ready() {
System.out.printIn("ff&E#EE. . . ");

private void after() {
System.out.printIn("fLEf. . - ");

U2 NEMRIEISEI, &7 BRERINERIER MERSE R X/IMESHIGI RS XS IRRA
ER, BEIERIIHEEMASE R Bk,

public interface Image {

void showImage();

public class HighResolutionImage implements Image {

private URL imageURL;



private long startTime;
private int height;
private int width;

public int getHeight() {
return height;

pubTic int getwidth() {
return width;

pubTic HighResolutionImage(URL imageURL) {
this.imageURL = imageURL;
this.startTime = System.currentTimeMillis();
this.width = 600;
this.height = 600;

pubTlic boolean isLoad() {
// BRLER I, iR 3s fnEseAk
Tong endTime = System.currentTimeMillis();
return endTime - startTime > 3000;

@override
public void showImage() {
System.out.println("Real Image:

"

+ imageURL) ;

pubTlic class ImageProxy implements Image {
private HighResolutionImage highResolutionImage;

pubTic ImageProxy(HighResolutionImage highResolutionImage) {
this.highResolutionImage = highResolutionImage;

@override
public void showImage() {
while ('highResolutionImage.isLoad()) {
try {
System.out.println("Temp Image: " +
highResolutionImage.getwidth() + " " + highResolutionImage.getHeight());
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();

}

highResolutionImage.showImage();



public class Imageviewer {

pubTlic static void main(String[] args) throws Exception {
String image = "http://image.jpg";
URL url = new URL(image);
HighResolutionImage highResolutionImage = new HighResolutionImage(url);
ImageProxy imageProxy = new ImageProxy(highResolutionImage);
imageProxy.showImage();

@I

1)DKE RIS

2.CGLIB

3.ASMREERIES, AI4HPMERE)

ESESDHREEES

* R FOEREAREEE, FERREINEL
* R NMESFRBRIER EXIT5EIEE

* K
* ETFEORSME
* BT FRRIESHE
JDKEHRIBISAE
- java.lang.reflect.Proxy
*{ER: SISERACESSAINISR
- java.lang.reflect.InvocationHandler
* BILAEId invoke /3 AL ESL A E ARG E)
* BRIEIT Proxy £ IS SRATER T S EXI M AL IR BRI SR

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

public class client {
public static void main(string[] args) {

Realstar realStar = new RealStar();

StarHandler starHandler = new StarHandler(realStar);

Star proxy = (Star)
Proxy.newProxyInstance(ClassLoader.getSystemClassLoader(), new Class[]
{star.class}, starHandler);

proxy.sing(Q;

interface Star {
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void confer();

o

void colTlectMoney();

class Realstar implements Star {
@override
public void confer() {
System.out.printIn("Realstarfiz");

@override
public void signContract() {
System.out.printin("RealstarZ4H");

@override
public void bookTicket() {
System.out.printin("RealstarilZ");

@override
public void sing() {
System.out.println("RealStariE");

@verride
public void collectMoney() {
System.out.printIn("Realstarift");

class StarHandler implements InvocationHandler {
Star realstar;



public StarHandler(Star realstar) {

super(Q);
this.realstar = realstar;

}

@override
pubTlic Object invoke(Object proxy, Method method, Object[] args) throws
Throwable {
Object object = null;
System.out.printIn("EIEWEHATHI: ") ;
System.out.printIn("Hk, Z&H, Witk T%E");
if (method.getName() .equals("sing")) {
object = method.invoke(realstar, args);

}
System.out.printIn("EEMFEHRITE: ");
Ssystem.out.printIn("EH™) ;

return object;

B OISR
* BFEONARE:

* WRAYSE: Proxy
* BfitE: JDKES
* AI IR &R
* {FEFProxy2sAdnewProxylnstancefgi%
* QIR SRAYESK:
* WRIEBEROITH—MED, NRKENAEEFER

* newProxylnstancef5iEHIS£]:
* ClassLoader: ZEhN#EiEs
*EERATMEAENSRFHEN. MIENRERERENEEE. 5i%:

WARIBENTSR getClass().getClassLoader()
* Class[]: 15384
*ERATIRENSIIEAENSEERGE. BiE:

WIS getClass().getInterfaces()
* InvocationHandler: FAFHRALEEAIRD
* BRUERNBNERE, BiI—RBEL—MZEORNIIE, BEER MRERNERER, BA
BV, BiA:

new InvocationHandler() {

@override

pubTic Object invoke(Object proxy, Method method, Object[] args) throws
Throwable{

}

* IO RSCISER R IERIES.
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&0

public interface IProducer {
pubTlic void saleProduct(float money);
public void afterService(float money);

public class Producer implements IProducer{
pubTic void saleProduct(float money){
System.out.printIn("HEr= 5, HEHE: "+money);
}
public void afterService(float money){
System.out.printIn("#2{tEERS, HERE: "+money) ;

AR EES

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

public class Client {
public static void main(string[] args) {
/ /VEZ PRSI AR A R AR B D F na 14211
final Producer producer = new Producer();

IProducer proxyProducer = (IProducer) Proxy.newProxyInstance(
producer.getClass() .getClassLoader(),
producer.getClass() .getInterfaces(),
new InvocationHandler() {
Vi
* VER: ST R BT D T iE R G i% 0Tk
* ESE L
* @param proxy AREEXFRIGIH CRETEPFEARHES R UHE, —
FEASHD
* @param method HHiHTHIITIE
* @param args  HEIHATHIEE IS
* @return FYREX G756 A6 F 1R [BE
* @throws Throwable
*/
@override
public Object invoke(Object proxy, Method method, Object[]
args) throws Throwable {
/ /SR AR
Object returnvalue = null;
/ /1 T PAT IS4
Float money = (Float) args[0];
/72 FIW 4TI A R
if ("saleProduct".equals(method.getName())) {
[/BARERN RS, ARIRNS R 77 92 AR [ Ak (el 18
returnvalue = method.invoke(producer, money * 0.8f);
}

return returnvalue;
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3
D;
proxyProducer.saleProduct(10000f);

}

interface IProducer {
pubTlic void saleProduct(float money);

public void afterService(float money);

}

class Producer implements IProducer {
pubTlic void saleProduct(float money) {
System.out.printIn("# /=5, JFEHE: " + money);
3

public void afterservice(float money) {
System.out.printIn("# &R, HEHE: " + money);
}

B FRAIESE
* EFFRMAIE:

* WKAIZE: Enhancer

* RftE: B=FcglibkE, BIFEESANarE (mavenTIEFESAKIH)

<dependency>
<groupId>cglib</groupid>
<artifactid>cglib</artifactid>
<version>2.1_3</version>
</dependency>

* A elECERSR

* ffiflEnhancerZfficreate’iik
o QUEACTENT SR AR A i R
create NI S

* Class: =15
* CRATFIEEFRENSNFEDE. Bik:

WARIBENT SR getClass()
* Callback: FAFIRAHLIRAIRED
* BRI, FI—RERL—MNZEONIIE, BREER MIREZRERE, BF
IR,
* I ERORSCIEE R IERES.
* BA—REERi1ZzEORFEOSINZE: Methodinterceptor
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BE( A%

public class Producer {
public void saleProduct(float money){
System.out.printIn("#&/™f, JHFEFE: "+money) ;
}
public void afterservice(float money){
system.out.printIn("#&#t& 5k, JEEHE: "+money);

J8 LS

public class Client {
public static void main(Sstring[] args) {
final Producer producer = new Producer();
Producer cglibProducer = (Producer)Enhancer.create(
producer.getClass(),
new MethodInterceptor() {
/:‘::’:
* PAT PRI R M TR e A vk
* @param proxy
* @param method
* @param args
PLE =SSR T8 O 3SR i nvoke A M S 40E —FE
* @param methodProxy : 4HIHTITIERICELN &
* @return
* @throws Throwable
*/
@override
public Object intercept(Object proxy, Method method, Object[]
args, MethodProxy methodProxy) throws Throwable {
/ / FRAEHE R A
Object returnvalue = null;
/ /1 REUTEPAT IS4
Float money = (Float)args[O0];
/ /2. FI AR T AR A R
if("saleProduct".equals(method.getName())) {
returnvalue = method.invoke(producer, money*0.8f);
3

return returnvalue;

s
cglibProducer.saleProduct(12000f);
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